首页> 外文OA文献 >Simultaneous RSS-based Localization and Model Calibration in Wireless Networks With a Mobile Robot
【2h】

Simultaneous RSS-based Localization and Model Calibration in Wireless Networks With a Mobile Robot

机译:使用移动机器人的无线网络中同时基于RSS的本地化和模型校准

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a recursive expectation maximization-like algorithm that can be used to simultaneously locate the nodes of a wireless network and calibrate the parameters of received signal strength vs. distance models. The algorithm fine tunes one model for each node accounting for its local environment and small hardware differences with respect other nodes. In contrast with using a common model for all the nodes, it is not required to artificially inflate the standard deviation of the random variable accounting for uncertainties in order to accommodate differences of signal strength measurements from different nodes. As a consequence, the position estimate is more accurate. We conducted a series of experiments in which a mobile robot with known location was used as a mobile beacon in three environments with different propagation characteristics. The results show a significant decrease of the mean error of the position estimates in all environments when using individual models compared to using a commonone. Using a model with a third order polynomial and a mixture of two Gaussians, the algorithm was able to locate the nodes within a meter on average in an office and with less than half a meter in more open environments. The estimated potential accuracy is about half a meter in all the environments.
机译:本文提出了一种类似于递归期望最大化的算法,该算法可用于同时定位无线网络的节点并校准接收信号强度与距离模型的参数。该算法针对每个节点微调了一个模型,考虑到其本地环境以及相对于其他节点的较小硬件差异。与对所有节点使用通用模型相反,不需要人为地增加考虑不确定性的随机变量的标准偏差,以便适应来自不同节点的信号强度测量结果的差异。结果,位置估计更加准确。我们进行了一系列实验,其中在三个具有不同传播特性的环境中,将位置已知的移动机器人用作移动信标。结果表明,与使用commonone相比,使用单个模型时在所有环境中位置估计的平均误差均显着降低。使用具有三阶多项式和两个高斯混合的模型,该算法能够在办公室中平均定位在一米以内的节点,而在更开放的环境中定位不到一米的节点。在所有环境中,估计的潜在精度约为半米。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号